Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight

Abstract

Alzheimer disease is more than a pure proteopathy. Chronic neuroinflammation stands out during the pathogenesis of the disease and in turn modulates disease progression. The central nervous system (CNS) is separated from the blood circulation by the blood–brain barrier. In Alzheimer disease, neuroinflammation heavily relies on innate immune responses that are primarily mediated by CNS-resident microglia. APOE (which encodes apolipoprotein E) is the strongest genetic risk factor for Alzheimer disease, and APOE was recently shown to affect the disease in part through its immunomodulatory function. This function of APOE is likely linked to triggering receptor expressed on myeloid cells 2 (TREM2), which is expressed by microglia in the CNS. Here, we review the rapidly growing literature on the role of disease-associated microglia, TREM2 and APOE in the pathogenesis of Alzheimer disease and present an integrated view of innate immune function in Alzheimer disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of neuroinflammation in different stages of Alzheimer disease.
Fig. 2: Model of immunomodulatory functions of APOE in Alzheimer disease pathogenesis and neurodegeneration along disease progression.

Similar content being viewed by others

References

  1. Alzheimer, A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. 64, 146–148 (1907).

    Google Scholar 

  2. Jack, C. R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367, 795–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  PubMed  Google Scholar 

  5. Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer’s disease: the challenge of the second century. Sci. Transl Med. 3, 77sr71 (2011).

    Google Scholar 

  6. Pimenova, A. A., Raj, T. & Goate, A. M. Untangling genetic risk for Alzheimer’s disease. Biol. Psychiatry 83, 300–310 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, G. C. & Neher, J. J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci. 15, 209–216 (2014).

    CAS  PubMed  Google Scholar 

  9. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). This study defines the roles of A1 astrocytes in neurodegenerative diseases and demonstrates an essential role of microglia–astrocytes crosstalk in A1 astrocytic activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaushal, V. et al. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-β production and axonal degeneration-associated caspase-6 activation. Cell Death Differ. 22, 1676–1686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, M. S. et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 5, e1382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  14. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Google Scholar 

  15. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  16. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Marin-Teva, J. L. et al. Microglia promote the death of developing Purkinje cells. Neuron 41, 535–547 (2004).

    CAS  PubMed  Google Scholar 

  19. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    CAS  PubMed  Google Scholar 

  20. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  21. Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91, 461–553 (2011).

    CAS  PubMed  Google Scholar 

  22. Wu, Y., Dissing-Olesen, L., MacVicar, B. A. & Stevens, B. Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Boche, D., Perry, V. H. & Nicoll, J. A. Review: activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol. 39, 3–18 (2013).

    CAS  PubMed  Google Scholar 

  25. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Keren-Shaul, H. et al. A Unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    CAS  PubMed  Google Scholar 

  28. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017). This work and reference 27 raise the concept of a neurodegenerative microglial phenotype. They define the molecular signatures of the phenotype and demonstrate the requirement of TREM2 and APOE for its activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chakrabarty, P., Herring, A., Ceballos-Diaz, C., Das, P. & Golde, T. E. Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol. Neurodegener. 6, 16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakrabarty, P. et al. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid β precursor protein transgenic mice. J. Immunol. 184, 5333–5343 (2010).

    CAS  PubMed  Google Scholar 

  31. Chakrabarty, P. et al. Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J. 24, 548–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guillot-Sestier, M. V. et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85, 534–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chakrabarty, P. et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85, 519–533 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakrabarty, P. et al. Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol. Neurodegener. 7, 36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med. 18, 1812–1819 (2012).

    CAS  PubMed  Google Scholar 

  36. Kiyota, T. et al. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 24, 3093–3102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiao, X., Cummins, D. J. & Paul, S. M. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur. J. Neurosci. 14, 474–482 (2001).

    CAS  PubMed  Google Scholar 

  38. Spangenberg, E. E. et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain 139, 1265–1281 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Grathwohl, S. A. et al. Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sosna, J. et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol. Neurodegener. 13, 11 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017). This work shows that activated microglia promote amyloid-β seeding via secreting adaptor protein ASC specks that cross-seed amyloid-β. This study together with reference 39 suggests that microglia participate in the initiation stage of plaque formation by affecting amyloid-β seeding.

    CAS  PubMed  Google Scholar 

  42. Baik, S. H., Kang, S., Son, S. M. & Mook-Jung, I. Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia 64, 2274–2290 (2016).

    PubMed  Google Scholar 

  43. Yin, Z. et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol. Aging 55, 115–122 (2017).

    CAS  PubMed  Google Scholar 

  44. Ulrich, J. D. et al. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol. Neurodegener. 9, 20 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Jay, T. R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J. Exp. Med. 212, 287–295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jay, T. R. et al. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer’s disease. J. Neurosci. 37, 637–647 (2017). References 44–47 show that TREM2 promotes microglial clustering around amyloid-β plaques and demonstrate a disease stage-dependent effect of TREM2 deficiency on amyloid-β pathology.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan, P. et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90, 724–739 (2016). References 48 and 49 demonstrate a major TREM2-dependent function of plaque-associated microglia to trim and compact plaques and to serve as a barrier to reduce neuritic dystrophy.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, Y. et al. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 97, 1023–1031 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, C. Y. D. et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 97, 1032–1048 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamada, K. et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J. Neurosci. 31, 13110–13117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Clavaguera, F., Hench, J., Goedert, M. & Tolnay, M. Invited review: Prion-like transmission and spreading of tau pathology. Neuropathol. Appl. Neurobiol. 41, 47–58 (2015).

    CAS  PubMed  Google Scholar 

  55. Takeda, S. et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat. Commun. 6, 8490 (2015).

    CAS  PubMed  Google Scholar 

  56. Bolos, M. et al. Direct evidence of internalization of tau by microglia in vitro and in vivo. J. Alzheimers Dis. 50, 77–87 (2016).

    CAS  PubMed  Google Scholar 

  57. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    CAS  PubMed  Google Scholar 

  59. Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. & LaFerla, F. M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. 25, 8843–8853 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y., Liu, L., Barger, S. W. & Griffin, W. S. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J. Neurosci. 23, 1605–1611 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kitazawa, M. et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J. Immunol. 187, 6539–6549 (2011).

    CAS  PubMed  Google Scholar 

  62. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Maphis, N. et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138, 1738–1755 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Nash, K. R. et al. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging 34, 1540–1548 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bemiller, S. M. et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Jiang, T. et al. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol. Aging 36, 3176–3186 (2015).

    CAS  PubMed  Google Scholar 

  67. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl Acad. Sci. USA 114, 11524–11529 (2017). This work shows that dampening neurodegenerative microglial activation via TREM2 deletion reduces neurodegeneration at an advanced disease stage in a tauopathy mouse model, supporting a role of microglia in modulating neurodegeneration.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, T. et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology 105, 196–206 (2016).

    CAS  PubMed  Google Scholar 

  69. Shi, Y. et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527 (2017). This study demonstrates an amyloid-β-independent role of APOE in regulating neurodegeneration and neuroinflammation in the setting of a tauopathy. The protective effect of APOE deficiency on neurodegeneration is in line with that of TREM2.

    PubMed  PubMed Central  Google Scholar 

  70. Kraft, A. W. et al. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    CAS  PubMed  Google Scholar 

  72. Zhang, Y. & Barres, B. A. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20, 588–594 (2010).

    CAS  PubMed  Google Scholar 

  73. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chung, W. S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung, W. S. et al. Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl Acad. Sci. USA 113, 10186–10191 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zamanian, J. L. et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lian, H. et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85, 101–115 (2015).

    CAS  PubMed  Google Scholar 

  79. Lian, H. et al. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci. 36, 577–589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2017).

    CAS  PubMed  Google Scholar 

  81. Varvel, N. H. et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc. Natl Acad. Sci. USA 109, 18150–18155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Prokop, S. et al. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer’s disease-like mice. J. Exp. Med. 212, 1811–1818 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Varvel, N. H. et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J. Exp. Med. 212, 1803–1809 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Michaud, J. P., Bellavance, M. A., Prefontaine, P. & Rivest, S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid β. Cell Rep. 5, 646–653 (2013).

    CAS  PubMed  Google Scholar 

  85. Baik, S. H. et al. Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model. Neurobiol. Aging 35, 1286–1292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zenaro, E. et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 21, 880–886 (2015).

    CAS  PubMed  Google Scholar 

  87. Kumar, D. K. et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl Med. 8, 340ra372 (2016).

    Google Scholar 

  88. Holtzman, D. M., Herz, J. & Bu, G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harbor Persp. Med. 2, a006312 (2012).

    Google Scholar 

  89. Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. & Taylor, J. M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest. 76, 1501–1513 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Uchihara, T. et al. ApoE immunoreactivity and microglial cells in Alzheimer’s disease brain. Neurosci. Lett. 195, 5–8 (1995).

    CAS  PubMed  Google Scholar 

  92. Corder, E. H. et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923 (1993).

    CAS  PubMed  Google Scholar 

  93. Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Agosta, F. et al. Apolipoprotein E ε4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc. Natl Acad. Sci. USA 106, 2018–2022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17, 263–264 (1997).

    CAS  PubMed  Google Scholar 

  97. Kim, J. et al. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31, 18007–18012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Holtzman, D. M. et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 97, 2892–2897 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fagan, A. M. et al. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 9, 305–318 (2002).

    CAS  PubMed  Google Scholar 

  100. Castellano, J. M. et al. Human apoE isoforms differentially regulate brain amyloid-peptide clearance. Sci. Transl Med. 3, 89ra57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Huynh, T. V., Davis, A. A., Ulrich, J. D. & Holtzman, D. M. Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J. Lipid Res. 58, 824–836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Strittmatter, W. J. et al. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc. Natl Acad. Sci. USA 91, 11183–11186 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Fleming, L. M., Weisgraber, K. H., Strittmatter, W. J., Troncoso, J. C. & Johnson, G. V. W. Differential binding of apolipoprotein E isoforms to tau and other cytoskeletal proteins. Exp. Neurol. 138, 252–260 (1996).

    CAS  PubMed  Google Scholar 

  104. Mishra, A. et al. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain 140, 1437–1446 (2017).

    PubMed  Google Scholar 

  105. Tsuang, D. et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 70, 223–228 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Gallardo, G., Schluter, O. M. & Sudhof, T. C. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nat. Neurosci. 11, 301–308 (2008).

    CAS  PubMed  Google Scholar 

  107. Shin, S. et al. Apolipoprotein E mediation of neuro-inflammation in a murine model of multiple sclerosis. J. Neuroimmunol. 271, 8–17 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gale, S. C. et al. APOE4 is associated with enhanced in vivo innate immune responses in human subjects. J. Allergy Clin. Immunol. 134, 127–134 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vitek, M. P., Brown, C. M. & Colton, C. A. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 30, 1350–1360 (2009).

    CAS  PubMed  Google Scholar 

  110. Zhu, Y. et al. APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 60, 559–569 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Fessler, M. B. & Parks, J. S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 187, 1529–1535 (2011).

    CAS  PubMed  Google Scholar 

  112. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 121, 4138–4149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Okoro, E. U. et al. Apolipoprotein E4 is deficient in inducing macrophage ABCA1 expression and stimulating the Sp1 signaling pathway. PLoS ONE 7, e44430 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Atagi, Y. et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290, 26043–26050 (2015). This work demonstrates that APOE is a receptor for TREM2 and shows that APOE binds to apoptotic neuronal cell surfaces and increases TREM2-mediated phagocytosis by microglia in vitro, supporting the APOE opsonization hypothesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bailey, C. C., DeVaux, L. B. & Farzan, M. The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J. Biol. Chem. 290, 26033–26042 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jendresen, C., Arskog, V., Daws, M. R. & Nilsson, L. N. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J. Neuroinflamm. 14, 59 (2017).

    Google Scholar 

  118. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C. & Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-β by microglia. Neuron 91, 328–340 (2016).

    CAS  PubMed  Google Scholar 

  119. Ulrich, J. D. et al. ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 215, 1047–1058 (2018). This work demonstrates that APOE is required for microglial association with plaques to perform a plaque-trimming function similar to that of TREM2, supporting an APOE–TREM2 axis in mediating microglial function.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Huynh, T. V. et al. Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96, 1013–1023 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, C. C. et al. ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, 1024–1032 (2017). References 121 and 122 show that APOE is essential for plaque formation during the initial seeding stage.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E. & Ikeda, K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 541, 163–166 (1991).

    CAS  PubMed  Google Scholar 

  123. Wisniewski, T. & Frangione, B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238 (1992).

    CAS  PubMed  Google Scholar 

  124. Rodriguez, G.a., Tai, L. M., LaDu, M. J. & Rebeck, G. W. Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. J. Neuroinflamm. 11, 111–111 (2014).

    Google Scholar 

  125. Huang, Y. et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl Acad. Sci. USA 98, 8838–8843 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Farrer, L. A. et al. Allele ε4 of apolipoprotein E shows a dose effect on age at onset of Pick disease. Exp. Neurol. 136, 162–170 (1995).

    CAS  PubMed  Google Scholar 

  127. Brecht, W. J. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J. Neurosci. 24, 2527–2534 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Harris, F. M., Brecht, W. J., Xu, Q., Mahley, R. W. & Huang, Y. Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J. Biol. Chem. 279, 44795–44801 (2004).

    CAS  PubMed  Google Scholar 

  129. Zhou, M. et al. APOE4 induces site-specific tau phosphorylation through calpain-CDK5 signaling pathway in EFAD-Tg mice. Curr. Alzheimer Res. 13, 1048–1055 (2016).

    CAS  PubMed  Google Scholar 

  130. Pericak-Vance, M. A. et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am. J. Hum. Genet. 48, 1034–1050 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Neyen, C. D. & Gordon, S. in eLS (John Wiley & Sons, Ltd, 2001).

  132. de Jong, A. Activation of human T cells by CD1 and self-lipids. Immunol. Rev. 267, 16–29 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. de Pablo, M. A. & Alvarez de Cienfuegos, G. Modulatory effects of dietary lipids on immune system functions. Immunol. Cell Biol. 78, 31–39 (2000).

    PubMed  Google Scholar 

  134. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    CAS  PubMed  Google Scholar 

  135. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    CAS  PubMed  Google Scholar 

  136. Colonna, M. & Wang, Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 17, 201–207 (2016).

    CAS  PubMed  Google Scholar 

  137. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yeh, F. L., Hansen, D. V. & Sheng, M. TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med. 23, 512–533 (2017).

    CAS  PubMed  Google Scholar 

  141. Ulrich, J. D., Ulland, T. K., Colonna, M. & Holtzman, D. M. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248 (2017).

    CAS  PubMed  Google Scholar 

  142. Zheng, H. et al. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol. Aging 42, 132–141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Benitez, B. A. et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol. Aging 35, 1510.e19–1510.e26 (2014).

    CAS  Google Scholar 

  144. Jehle, A. W. et al. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J. Cell Biol. 174, 547–556 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, W. S. et al. Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J. Neurosci. 33, 4387–4394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sakae, N. et al. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology. J. Neurosci. 36, 3848–3859 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Crehan, H. et al. Complement receptor 1 (CR1) and Alzheimer’s disease. Immunobiology 217, 244–250 (2012).

    CAS  PubMed  Google Scholar 

  148. Cunin, P. et al. Clusterin facilitates apoptotic cell clearance and prevents apoptotic cell-induced autoimmune responses. Cell Death Dis. 7, e2215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang, K. L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bradshaw, E. M. et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Griciuc, A. et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron 78, 631–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Walsh, J. G., Muruve, D. A. & Power, C. Inflammasomes in the CNS. Nat. Rev. Neurosci. 15, 1–14 (2014).

    Google Scholar 

  155. Jablonski, K. A. et al. Novel markers to delineate murine M1 and M2 macrophages. PLOS ONE 10, e0145342 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by US National Institutes of Health grants R01AG047644, R01NS090934 and R01NS034467 and support from the JPB Foundation, the Tau Consortium and the Cure Alzheimer Disease Fund to D.M.H.

Reviewer information

Nature Reviews Immunology thanks O. Butovsky and M. Heneka for their assistance with the peer review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. wrote the draft of the manuscript. D.M.H. reviewed and edited the manuscript.

Corresponding author

Correspondence to David M. Holtzman.

Ethics declarations

Competing interests

D.M.H. co-founded and is on the scientific advisory board of C2N Diagnostics. D.M.H. is on the scientific advisory board of Denali, Genentech and Proclara. D.M.H. consults for AbbVie and Eli Lilly.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Amyloid-β

A small peptide that is a major component of amyloid deposits in the brain and cerebrovasculature. It is generated from cleavage of amyloid precursor protein (APP). Depending on the carboxy-terminal cleavage site, amyloid-β peptides of varying lengths (36–43 amino acids; denoted as Aβ36–Aβ43) can be generated, among which Aβ40 and Aβ42 are the most prevalent species.

Tau

A microtubule-binding protein synthesized primarily in neurons. Under normal conditions, tau is most abundantly located in axons and serves to stabilize microtubules. In Alzheimer disease, tau becomes hyperphosphorylated, dissociates from microtubules, translocates from axons to neuronal cell bodies and dendrites and self-aggregates to form neurofibrillary tangles.

Aβ42/Aβ40 ratio

Aβ42 is more fibrillogenic than Aβ40. The level of Aβ42 produced relative to Aβ40 determines the propensity of amyloid plaque formation.

Kainic acid

A potent neuroexcitatory amino acid that serves as an agonist for kainate-class ionotropic glutamate receptors. High doses of kainic acid induce neuronal death by overexcitation of neurons.

5XFAD mice

An amyloid-β-depositing mouse model that overexpresses mutant human amyloid precursor protein (APP) carrying the Swedish (K670N and M671L), Florida (I716V) and London (V717I) mutations linked to familial Alzheimer disease along with human presenilin 1 (PS1) carrying the M146L and L286V mutations. Both transgenes are controlled under the Thy1 promoter. These mice accumulate high levels of intraneuronal Aβ42 around 6 weeks of age, followed by plaque deposition around 2 months of age.

APPSwePSEN1dE9 mice

An amyloid-β-depositing mouse model that expresses a chimeric mouse–human APP transgene carrying the Swedish mutations (K670N and M671L) and a mutant PSEN1 transgene lacking exon 9 (dE9) under the prion promoter. These mice begin to develop amyloid-β pathology around 6 months of age.

Ionized calcium-binding adaptor molecule 1

(IBA1). A microglia marker protein in the central nervous system that binds calcium and actin. It is involved in RAC GTPase-dependent membrane ruffling and phagocytosis during microglial cell activation.

3xTg-AD mice

A mouse model that harbours three mutant human genes (APPK670N,M671L, PSEN1M146V and MAPTP301L) and sequentially develops amyloid-β pathology and tau pathology starting at 6 months of age.

htau mice

A mouse model that expresses all six human tau isoforms, including 3R and 4R tau, under the endogenous human MAPT promoter and expresses no murine tau. These mice start to develop tau pathology around 9 months of age.

rTg4510 mice

A tauopathy mouse model overexpressing the 0N4R human tau isoform carrying the P301L mutation linked to familial frontotemporal dementia. Tau transgene expression is largely restricted to the forebrain by the Camk2a promoter and is regulatable by doxycycline. These mice develop tau pathology around 3–4 months of age and show substantial neuronal loss by 6 months of age.

P301S mice

A tauopathy mouse model overexpressing the 1N4R human tau isoform carrying the P301S mutation found in patients with frontotemporal dementia. These mice begin to accumulate tau pathology at 4–5 months of age and develop severe brain atrophy at 9 months of age.

APOE-targeted replacement mice

(APOE-TR mice). These mice express human apolipoprotein E (APOE) in place of the murine APOE under the endogenous murine Apoe promoter. Therefore, the expression level and pattern of human APOE are maintained in a physiological form.

APPPS1-21 mice

An amyloid-β-depositing mouse model that harbours mutant human transgenes of APP (K670N and M671L) and PSEN1 (L166P), which are both under the control of the Thy1 promoter. These mice begin to develop amyloid plaques in the neocortex at approximately 6 weeks of age, followed by deposits in the hippocampus at 3–4 months of age.

Superoxide dismutase 1 mice

(SOD1 mice). A mouse model for amyotrophic lateral sclerosis (ALS) that overexpresses human SOD1 carrying the G93A mutation. These mice recapitulate phenotypes in human patients with ALS, showing motor neuron loss in the spinal cord and paralysis in one or more limbs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Holtzman, D.M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18, 759–772 (2018). https://doi.org/10.1038/s41577-018-0051-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0051-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing