Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental pollution and kidney diseases

Key Points

  • Up to 22% of the global burden of disease and 23% of deaths are attributable to environmental pollution; the general public is inevitably exposed to environmental pollutants

  • The kidney is particularly vulnerable to toxic effects from environmental pollutants owing to its filtration functions; environmental and occupational exposures to pollutants remain common causes of kidney disease worldwide, especially in developing countries

  • Long-term exposure to particulate matter <2.5 μm in mean aerodynamic diameter (PM2.5) is associated with increased risk of membranous nephropathy and more rapid decline in renal function

  • Exposure to heavy metals leads to acute and chronic kidney injury; tubular dysfunction is the most common manifestation of nephrotoxicity from heavy metals

  • Owing to the worldwide distribution of Aristolochia spp. and the still widespread use of medicinal herbal remedies containing aristolochic acids, especially in east Asia, it is possible that aristolochic acids might be the cause of unrecognized nephropathies

  • Exposure to industrial and agricultural chemicals, biogenic toxins and secondhand smoke are additional risk factors for kidney disease

Abstract

The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose–response relationship between pollutants and kidney diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Worldwide distribution of disease burden attributable to environmental risks in 2012.
Figure 2: Size classification of particulate matter.
Figure 3: Potential mechanisms linking inhaled particles to pulmonary, cardiovascular, cerebral and kidney diseases.

Similar content being viewed by others

References

  1. Mills, K. T. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88, 950–957 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

  3. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Grams, M. E., Juraschek, S. P. & Selvin, E. Trends in the prevalence of reduced GFR in the United States: a comparison of creatinine- and cystatin C-based estimates. Am. J. Kidney Dis. 62, 253–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brück, K. et al. CKD prevalence varies across the european general population. J. Am. Soc. Nephrol. 27, 2135–2147 (2016).

    Article  PubMed  Google Scholar 

  6. Xie, Y. et al. Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury. Kidney Int. 91, 1482–1494 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Prüss-Ustün, A., Wolf, J., Corval´n, C., Bos, R. & Neira, M. Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks (World Health Organization, 2016).

    Google Scholar 

  8. Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Aaron, J. C. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article  Google Scholar 

  10. Institute for Health Metrics and Evaluation. GBD compare. IHME https://vizhub.healthdata.org/gbd-compare (2016).

  11. Brook, R. D. et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109, 2655–2671 (2004).

    Article  PubMed  Google Scholar 

  12. Carlsten, C. et al. Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study. Thorax 71, 35–44 (2016).

    Article  PubMed  Google Scholar 

  13. Liu, Y. et al. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms. Front. Physiol. 6, 162 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Kelly, F. J. et al. Monitoring air pollution: use of early warning systems for public health. Respirology 17, 7–19 (2012).

    Article  PubMed  Google Scholar 

  15. Kellogg, W. W. et al. The sulfur cycle. Science 175, 587–596 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. Bruce, N., Perez-Padilla, R. & Albalak, R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull. World Health Organ. 78, 1078–1092 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Larkin, A. et al. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 50, 9142–9149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. [No authors listed.] Ambient (outdoor) air pollution in cities database 2014. World Health Organization http://www.who.int/phe/health_topics/outdoorair/databases/cities-2014/en/ (2014).

  19. Xu, X. et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J. Am. Soc. Nephrol. 27, 3739–3746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dockery, D. W. & Pope, C. A. 3rd. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 15, 107–132 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Holder, A. L. et al. Inflammatory response of lung cells exposed to whole, filtered, and hydrocarbon denuded diesel exhaust. Chemosphere 70, 13–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Heeb, N. V. et al. PCDD/F formation in an iron/potassium-catalyzed diesel particle filter. Environ. Sci. Technol. 47, 6510–6517 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Jayaram, V. et al. Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel. Environ. Sci. Technol. 45, 2286–2292 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bahadar, H., Mostafalou, S. & Abdollahi, M. Current understandings and perspectives on non-cancer health effects of benzene: a global concern. Toxicol. Appl. Pharmacol. 276, 83–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Z. L. Association between chronic obstructive pulmonary disease and lung cancer: the missing link. Chin. Med. J. 126, 154–165 (2013).

    PubMed  Google Scholar 

  26. Kampa, M. & Castanas, E. Human health effects of air pollution. Environ. Poll. 151, 362–367 (2008).

    Article  CAS  Google Scholar 

  27. U.S. Environmental Protection Agency. Integrated Science Assessment (ISA) for Oxides of Nitrogen — Health Criteria (Final Report, 2016). EPA https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879 (2016).

  28. Xing, Y. F., Xu, Y. H., Shi, M. H. & Lian, Y. X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 8, E69–E74 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang, S. K., Zhang, Q., Qiu, Z. & Chung, K. F. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J. Thorac. Dis. 7, 23–33 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Zhang, Q., Qiu, Z., Chung, K. F. & Huang, S. K. Link between environmental air pollution and allergic asthma: east meets west. J. Thorac. Dis. 7, 14–22 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Rhoden, C. R., Wellenius, G. A., Ghelfi, E., Lawrence, J. & Gonzalez-Flecha, B. PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim. Biophys. Acta 1725, 305–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hesterberg, T. W. et al. Non-cancer health effects of diesel exhaust: a critical assessment of recent human and animal toxicological literature. Crit. Rev. Toxicol. 39, 195–227 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Carlisle, A. J. & Sharp, N. C. Exercise and outdoor ambient air pollution. Br. J. Sports Med. 35, 214–222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ristovski, Z. D. et al. Respiratory health effects of diesel particulate matter. Respirology 17, 201–212 (2012).

    Article  PubMed  Google Scholar 

  35. Miller, M. R. et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11, 4542–4552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lue, S. H. et al. Residential proximity to major roadways and renal function. J. Epidemiol. Commun. Health 67, 629–634 (2013).

    Article  Google Scholar 

  37. Mehta, A. J. et al. Long-term exposure to ambient fine particulate matter and renal function in older men: the Veterans Administration Normative Aging Study. Environ. Health Perspect. 124, 1353–1360 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bowe, B. et al. Particulate matter air pollution and the risk of uncident CKD and progression to ESRD. J. Am. Soc. Nephrol. 29, 218–230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Donaldson, K. et al. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2, 10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carvalho, T. C. & Peters, J. I. and Williams 3rd, R. O. Influence of particle size on regional lung deposition- what evidence is there? Int. J. Pharm. 406, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Nemmar, A. et al. Diesel exhaust particles in the lung aggravate experimental acute renal failure. Toxicol. Sci. 113, 267–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Waly, M. I., Ali, B. H. & Nemmar, A. Acute effects of diesel exhaust particles and cisplatin on oxidative stress in cultured human kidney (HEK 293) cells, and the influence of curcumin thereon. Toxicol. In Vitro 27, 2299–2304 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Nemmar, A. et al. Potentiation of cisplatin-induced nephrotoxicity by repeated exposure to diesel exhaust particles: An experimental study in rats. Exp. Biol. Med. 239, 1036–1044 (2014).

    Article  CAS  Google Scholar 

  44. Nemmar, A. et al. Prolonged pulmonary exposure to diesel exhaust particles exacerbates renal oxidative stress, inflammation and dna damage in mice with adenine-induced chronic renal failure. Cell. Physiol. Biochem. 38, 1703–1713 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Al Suleimani, Y. M. et al. Effect of diesel exhaust particles on renal vascular responses in rats with chronic kidney disease. Environ. Toxicol. 32, 541–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Ali, B. H. et al. The effect of thymoquinone treatment on the combined renal and pulmonary toxicity of cisplatin and diesel exhaust particles. Exp. Biol. Med. 240, 1698–1707 (2015).

    Article  CAS  Google Scholar 

  47. Atkinson, R. W. et al. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Am. J. Respir. Crit. Care Med. 164, 1860–1866 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Thomson, E. M. et al. Ozone inhalation provokes glucocorticoid-dependent and -independent effects on inflammatory and metabolic pathways. Toxicol. Sci. 152, 17–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Thomson, E. M. et al. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity. Toxicol. Sci. 135, 169–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ponticelli, C. & Glassock, R. J. Glomerular diseases: membranous nephropathy-a modern view. Clin. J. Am. Soc. Nephrol. 9, 609–616 (2014).

    Article  PubMed  Google Scholar 

  51. Granata, F. et al. Activation of cytokine production by secreted phospholipase A2 in human lung macrophages expressing the M-type receptor. J. Immunol. 174, 464–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Beck Jr, L. H. et al. M-Type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfau, J. C., Brown, J. M. & Holian, A. Silica-exposed mice generate autoantibodies to apoptotic cells. Toxicology 195, 167–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Thompson, A. M. et al. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen. Environ. Health Perspect. 118, 120–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Cui, Z. et al. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 28, 1651–1664 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Le, W. B. et al. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-related membranous nephropathy. J. Am. Soc. Nephrol. 28, 1642–1650 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).

    Article  PubMed  Google Scholar 

  59. Cheng, S. Heavy metal pollution in China: origin, pattern and control. Environ. Sci. Pollut. Res. Int. 10, 192–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, P. et al. Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agric. Sci. China 10, 109–119 (2011).

    Article  CAS  Google Scholar 

  61. Cheng, Z. Q. et al. Speciation of heavy metals in garden soils: evidences from selective and sequential chemical leaching. J. Soils Sediments 11, 628–638 (2011).

    Article  CAS  Google Scholar 

  62. Zhang, X. et al. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 10, e0135182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zeng, G. M. et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 5, 34541–34548 (2015).

    Article  CAS  Google Scholar 

  64. Zheng, Y. & Ayotte, J. D. At the crossroads: hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada. Sci. Total Environ. 505, 1237–1247 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Brouwer, R. et al. Comparing willingness to pay for improved drinking-water quality using stated preference methods in rural and urban Kenya. Appl. Health Econ. Health Policy 13, 81–94 (2015).

    Article  PubMed  Google Scholar 

  66. Fox, D. I. et al. Removing heavy metals in water: the interaction of cactus mucilage and arsenate (As (V)). Environ. Sci. Technol. 46, 4553–4559 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Wolf, J., Bonjour, S. & Prüss-Ustün, A. An exploration of multilevel modeling for estimating access to drinking-water and sanitation. J. Water Health 11, 64–77 (2013).

    Article  PubMed  Google Scholar 

  68. Onda, K., LoBuglio, J. & Bartram, J. Global access to safe water: accounting for water quality and the resulting impact on MDG progress. Int. J. Environ. Res. Publ. Health 9, 880–894 (2012).

    Article  Google Scholar 

  69. Satpathy, D., Reddy, M. V. & Dhal, S. P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. Biomed. Res. Int. 2014, 545473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wu, Q. et al. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci. Total Environ. 507, 217–225 (2015).

    Article  CAS  Google Scholar 

  71. Arnich, N. et al. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 50, 2432–2449 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Mortensen, M. E., Wong, L. Y. & Osterloh, J. D. Smoking status and urine cadmium above levels associated with subclinical renal effects in U. S. adults without chronic kidney disease. Int. J. Hyg. Environ. Health 214, 305–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Jarup, L. et al. Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand. J. Work. Environ. Health 9, 327–331 (1983).

    Article  CAS  PubMed  Google Scholar 

  74. Satarug, S. et al. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ. Health Perspect. 121, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsukahara, T. et al. Rice as the most influential source of cadmium intake among general Japanese population. Sci. Total Environ. 305, 41–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Akesson, A. et al. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ. Health Perspect. 113, 1627–1631 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chaumont, A. et al. Associations between proteins and heavy metals in urine at low environmental exposures: evidence of reverse causality. Toxicol. Lett. 210, 345–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Satarug, S., Vesey, D. A. & Gobe, G. C. Health risk assessment of dietary cadmium intake: Do current guidelines indicate how much is safe? Environ. Health. Perspect. 125, 284–288 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kobayashi, E. et al. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biol. Trace Elem. Res. 127, 257–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Nordberg, G. F. Historical perspectives on cadmium toxicology. Toxicol. Appl. Pharmacol. 238, 192–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Templeton, D. M. & Chaitu, N. Effects of divalent metals on the isolated rat glomerulus. Toxicology 61, 119–133 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Dorian, C., Gattone 2nd, V. H. & Klaasen, C. D. Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules — alight microscopic autoradiography study with 109CdMT. Toxicol. Appl. Pharmacol. 114, 173–181 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Lauwerys, R. R. et al. Characterization of cadmium proteinuria in man and rat. Environ. Health Perspect. 54, 147–152 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bernard, A., Lauwerys, R. & Gengoux, P. Characterization of the proteinuria induced by prolonged oral administration of cadmium in female rats. Toxicology 20, 345–357 (1981).

    Article  CAS  PubMed  Google Scholar 

  85. Nair, A. R. et al. Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch. Toxicol. 89, 2273–2289 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Bork, U. et al. Cadmium-induced DNA damage triggers G2/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells. Am. J. Physiol. Renal Physiol. 298, 255–265 (2010).

    Article  CAS  Google Scholar 

  87. Kim, H. R. et al. Transcriptional regulation, stabilization, and subcellular redistribution of multidrug resistance-associated protein 1 (MRP1) by glycogen synthase kinase 3αβ: novel insights on modes of cadmium-induced cell death stimulated by MRP1. Arch. Toxicol. 89, 1271–1284 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Mahaffey, K. R., Clickner, R. P. & Bodurow, C. C. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 112, 562–570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iesato, K. et al. Renal tubular dysfunction in Minamata disease. Detection of renal tubular antigen and beta-2-microglobin in the urine. Ann. Intern. Med. 86, 731–737 (1977).

    Article  CAS  PubMed  Google Scholar 

  90. Bohets, H. H. et al. Cytotoxicity of mercury compounds in LLC-PK1, MDCK and human proximal tubular cells. Kidney Int. 47, 395–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Nakazawa, N., Makino, F. & Okada, S. Acute effects of mercuric compounds on cultured mammalian cells. Biochem. Pharmacol. 24, 489–493 (1975).

    Article  CAS  PubMed  Google Scholar 

  92. Sarmad, S. & German, T. H. Environmental exposures, socioeconomics, disparities, and the kidneys. Adv. Chron. Kidney Dis. 22, 39–45 (2015).

    Article  Google Scholar 

  93. Miller, S., Pallan, S., Gangji, A. S., Lukic, D. & Clase, C. M. Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am. J. Kidney Dis. 62, 135–138 (2013).

    Article  PubMed  Google Scholar 

  94. Li, S. J. et al. Mercury-induced membranous nephropathy: clinical and pathological features. Clin. J. Am. Soc. Nephrol. 5, 439–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chakera, A., Lasserson, D., Beck Jr, L. H., Roberts, I. S. & Winearls, C. G. Membranous nephropathy after use of UK-manufactured skin creams containing mercury. QJM 104, 893–896 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hua, J., Pelletier, L., Berlin, M. & Druet, P. Autoimmune glomerulonephritis induced by mercury vapour exposure in the Brown Norway rat. Toxicology 79, 119–129 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Abedi-Valugerdi, M., Hu, H. & Möller, G. Mercury-induced renal immune complex deposits in young (NZB x NZW)F1 mice: characterization of antibodies/autoantibodies. Clin. Exp. Immunol. 110, 86–91 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Icard, P. et al. Evidence for a role of antilaminin-producing B cell clones that escape tolerance in the pathogenesis of HgCl2-induced membranous glomerulopathy. Nephrol. Dial. Transplant. 8, 122–127 (1993).

    CAS  PubMed  Google Scholar 

  99. Abedi-Valugerdi, M. & Möller, G. Contribution of H-2 and non-H-2 genes in the control of mercury-induced autoimmunity. Int. Immunol. 12, 1425–1430 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Pollard, K. M., Hultman, P. & Kono, D. H. Immunology and genetics of induced systemic autoimmunity. Autoimmun. Rev. 4, 282–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Gardner, R. M. et al. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ. Res. 110, 345–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Motts, J. A., Shirley, D. L., Silbergeld, E. K. & Nyland, J. F. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil. Environ. Res. 132, 12–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jedrychowski, W. et al. Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32, 270–278 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bellinger, D. C. Very low lead exposures and children's neurodevelopment. Curr. Opin. Pediatr. 20, 172–177 (2008).

    Article  PubMed  Google Scholar 

  105. Liu, J. et al. Prenatal and postnatal lead exposure and cognitive development of infants followed over the first three years of life: a prospective birth study in the Pearl River Delta region, China. Neurotoxicology 44, 326–334 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Shah-Kulkarni, S. et al. Neurodevelopment in early childhood affected by prenatal lead exposure and iron intake. Medicine 95, e2508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hara, A. et al. Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ. Res. 145, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Kim, N. H. et al. Environmental heavy metal exposure and chronic kidney disease in the general population. J. Kor. Med. Sci. 30, 272–277 (2015).

    Article  CAS  Google Scholar 

  109. Garcia-Esquinas, E. et al. Association of lead and cadmium exposure with frailty in US older adults. Environ. Res. 137, 424–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Fadrowski, J. J. et al. Blood lead level and kidney function in US adolescents: the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 170, 75–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Navas-Acien, A. et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am. J. Epidemiol. 170, 1156–1164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cramer, K. et al. Renal ultrastructure, renal function, and parameters of lead toxicity in workers with different periods of lead exposure. Br. J. Ind. Med. 31, 113–127 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Goyer, R. A. Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett. 46, 153–162 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Evans, M. & Elinder, C. G. Chronic renal failure from lead: myth or evidence-based fact? Kidney Int. 79, 272–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Oyagbemi, A. A. et al. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ. Toxicol. 30, 1235–1243 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kwon, S. Y. et al. Erythrophagocytosis of lead-exposed erythrocytes by renal tubular cells: possible role in lead-induced nephrotoxicity. Environ. Health Perspect. 123, 120–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Leonard, A. & Lauwerys, R. R. Carcinogenicity, teratogenicity and mutagenicity of arsenic. Mutat. Res. 75, 49–62 (1980).

    Article  CAS  PubMed  Google Scholar 

  118. Pierce, B. L. et al. Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLoS Genet. 8, e1002522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hughes, M. F. et al. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123, 305–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, J. & Waalkes, M. P. Liver is a target of arsenic carcinogenesis. Toxicol. Sci. 105, 24–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoshida, T., Yamauchi, H. & Fan Sun, G. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol. Appl. Pharmacol. 198, 243–252 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Meliker, J. R. et al. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ. Health 6, 4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jomova, K. & Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 283, 65–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, Z. et al. Identification of target organs of copper nanoparticles with ICP-MS technique. J. Radioanal. Nucl. Chem. 272, 599–603 (2007).

    Article  CAS  Google Scholar 

  125. Lei, R. et al. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol. Appl. Pharmacol. 232, 292–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Kumar, V. et al. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol. Appl. Pharmacol. 293, 37–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Wu, B. Y. et al. Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol. Environ. Safety 109, 70–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Pasanen, K. et al. Mortality among population with exposure to industrial air pollution containing nickel and other toxic metals. J. Occup. Environ. Med. 54, 583–591.

    Article  CAS  PubMed  Google Scholar 

  129. Guo, H. et al. Modulation of the PI3K/Akt pathway and Bcl-2 family proteins involved in chicken's tubular apoptosis induced by nickel chloride (NiCl2). Int. J. Mol. Sci. 16, 22989–23011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guo, H. et al. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney. Oncotarget 6, 28607–28620 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Fujishiro, H. et al. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4, 700–708 (2014).

    Article  CAS  Google Scholar 

  132. Lai, L. H. et al. Renal dysfunction and hyperuricemia with low blood lead levels and ethnicity in community-based study. Sci. Total Environ. 401, 39–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Goyer, R. A. Toxic and essential metal interactions. Annu. Rev. Nutr. 17, 37–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Bogden, J. D. et al. Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J. Nutr. 122, 1351–1360 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Blake, K. C. & Mann, M. Effect of calcium and phosphorus on the gastrointestinal absorption of 203Pb in man. Environ. Res. 30, 188–194 (1983).

    Article  CAS  PubMed  Google Scholar 

  136. Li, S. J. et al. Mercury-induced membranous nephropathy: clinical and pathological features. Clin. J. Am. Soc. Nephrol. 5, 439–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bridges, C. C., Joshee, L. & Zalups, R. K. Multi drug resistance proteins and the renal elimination of inorganic mercury mediated by 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3- dimercaptosuccinic acid. J. Pharmacol. Exp. Ther. 324, 383–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Zalups, R. K., Aslamkhan, A. G. & Ahmad, S. Human organic aniontransporter 1 mediates cellular uptake of cysteine-S conjugates of inorganic mercury. Kidney Int. 66, 251–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Zalups, R. K. & Ahmad, S. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1. J. Am. Soc. Nephrol. 15, 2023–2031 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Aleksunes, L. M. et al. Renal xenobiotic transporters are differentially expressed in mice following cisplatin treatment. Toxicology 250, 82–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Kala, S. V. et al. Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem. Res. Toxicol. 17, 243–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Scott, N. et al. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 6, 102–106 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Drobna, Z. et al. Metabolism of arsenic in human liver: the role of membrane transporters. Arch. Toxicol. 84, 3–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Djukanovic, L. R. & Radovanovic, Z. in Clinical Nephrotoxins (eds de Broe, M. E., Porter, G. A., Bennett, W. M., Verpooten & G. A.) 588–601 (Kluwer, 2003).

    Google Scholar 

  145. Petronic, V. in Endemic Nephropathy (eds Radovanovic, Z, Sindjic, M, Polenakovic, M, Djukanovic, L. J. & Petronic, V.) 350–439 (Institute for Textbook Publishing, Belgrade, 2000).

  146. Grollman, A.P. & Jelakovic, B. Role of environmental toxins in endemic (Balkan) nephropathy. October 2006, Zagreb, Croatia. J. Am. Soc. Nephrol. 18, 2817–2823 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Vanherweghem, J. L. et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341, 387–391 (1993).

    Article  CAS  PubMed  Google Scholar 

  148. Stiborova, M., Arlt, V. M. & Schmeiser, H. H. Balkan endemic nephropathy: an update on its aetiology. Arch. Toxicol. 90, 2595–2615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zeng, Y. et al. Aristolochic acid I induced autophagy extenuates cell apoptosis via ERK 1/2 pathway in renal tubular epithelial cells. PLoS ONE 7, e30312 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yang, C. C. et al. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro. Toxicology 312, 63–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Zeng, Y. et al. Autophagy inhibitors promoted aristolochic acid I induced renal tubular epithelial cell apoptosis via mitochondrial pathway but alleviated nonapoptotic cell death in mouse acute aritolochic acid nephropathy model. Apoptosis 19, 1215–1224 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Grollman, A. P. et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc. Natl Acad. Sci. USA 104, 12129–12134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl Med. 5, 197ra102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jelakovic, B. et al. Aristolactam–DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 81, 559–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Moriya, M. et al. TP53 Mutational signature for aristolochic acid: an environmental carcinogen. Int. J. Cancer 129, 1532–1536 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl Med. 5, 197ra101 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. National Toxicology Program. Toxicology and carcinogenesis studies of ochratoxin A (CAS No. 303-47-9) in F344/N Rats (Gavage Studies). Natl Toxicol. Program Tech. Rep. Ser. 358, 1–142 (1989).

  158. Fuchs, R. & Peraica, M. Ochratoxin A in human kidney diseases. Food Addit. Contam. 22, 53–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Wafa, E. et al. Human ochratoxicosis and nephropathy in Egypt: a preliminary study. Hum. Exp. Toxicol. 17, 124–129 (1998).

    Article  CAS  PubMed  Google Scholar 

  160. Malir, F. et al. Ochratoxin A: 50 years of research. Toxins 8, 191 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  161. Kim, K. H., Kabir, E. & Jahan, S. A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 575, 525–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Kim, S. J., Gil, H. W., Yang, J. O., Lee, E. Y. & Hong, S. Y. The clinical features of acute kidney injury in patients with acute paraquat intoxication. Nephrol. Dial. Transplant. 24, 1226–1232 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Mohamed, F. et al. Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning. Toxicol. Lett. 258, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Sonne, C. et al. Organochlorine-induced histopathology in kidney and liver tissue from Arctic fox (Vulpes lagopus). Chemosphere 71, 1214–1224 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Adachi, J. et al. 7-Hydroperoxycholesterol as a marker of oxidative stress in rat kidney induced by paraquat. Free Radic. Res. 33, 321–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Lebov, J. F. et al. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the agricultural health study. Environ. Res. 143, 198–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lebov, J. F. et al. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the agricultural health study. Occup. Environ. Med. 73, 3–12 (2016).

    Article  PubMed  Google Scholar 

  168. Mesnage, R. et al. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ. Health 14, 70 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Siddarth, M. et al. Increased level of organochlorine pesticides in chronic kidney disease patients of unknown etiology: role of GSTM1/GSTT1 polymorphism. Chemosphere 96, 174–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Kataria, A. et al. The effects of environmental chemicals on renal function. Nat. Rev. Nephrol. 11, 610–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hau, A. K., Kwan, T. H. & Li, P. K. Melamine toxicity and the kidney. J. Am. Soc. Nephrol. 20, 245–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Yang, L. et al. Four years follow-up of 101 children with melamine-related urinary stones. Urolithiasis 41, 265–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Xia, J. et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol. Dial. Transplant. 32, 475–487 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Omoloja, A. & Tyc, V. L. Tobacco and the pediatric chronic kidney disease population. Pediatr. Nephrol. 30, 235–243 (2015).

    Article  PubMed  Google Scholar 

  175. Omoloja, A. et al. Tobacco exposure in children and adolescents with chronic kidney disease: parental behavior and knowledge. A study from the Midwest Pediatric Nephrology Consortium. Clin. Nephrol. 81, 307–312 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Neufeld, E. J., Mietus-Snyder, M., Beiser, A. S., Baker, A. L. & Newburger, J. W. Passive cigarette smoking and reduced HDL cholesterol levels in children with high-risk lipid profiles. Circulation 96, 1403–1407 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Kallio, K. et al. Tobacco smoke exposure is associated with attenuated endothelial function in 11-year-old healthy children. Circulation 115, 3205–3212 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Omoloja, A. et al. Secondhand smoke exposure is associated with proteinuria in children with chronic kidney disease. Pediatr. Nephrol. 28, 1243–1251 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012).

    Article  PubMed  Google Scholar 

  180. Lunyera, J. et al. CKD of uncertain etiology: a systematic review. Clin. J. Am. Soc. Nephrol. 11, 379–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Jayasumana, C. et al. Drinking well water and occupational exposure to herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 14, 6 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Key Technology Support Program of China (2013BAI09B06 and 2015BAI12B07 to F.F.H.), the National Natural Science Foundation of China (81770683 to X.X.), the National Natural Science Foundation of China (Key Program) (81430016 to F.F.H.), the Major Scientific and Technological Planning Project of Guangzhou (201504010027 to F.F.H.) and the Major International (Regional) Joint Research Project (81620108003 to F.F.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the article's content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fan Fan Hou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Nie, S., Ding, H. et al. Environmental pollution and kidney diseases. Nat Rev Nephrol 14, 313–324 (2018). https://doi.org/10.1038/nrneph.2018.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2018.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing